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a b s t r a c t

Solution of partial differential equations by the method of lines requires the integration of
large numbers of ordinary differential equations (ODEs). In such computations, storage
requirements are typically one of the main considerations, especially if a high order ODE
solver is required. We investigate Runge–Kutta methods that require only two storage
locations per ODE. Existing methods of this type require additional memory if an error esti-
mate or the ability to restart a step is required. We present a new, more general class of
methods that provide error estimates and/or the ability to restart a step while still employ-
ing the minimum possible number of memory registers. Examples of such methods are
found to have good properties.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In this work we are concerned with the numerical solution of the initial value problem (IVP)
u0 ¼ Fðt;uÞ uð0Þ ¼ u0; ð1Þ
where u 2 RN and F : R�RN ! RN . For brevity, we will typically omit the time-dependence and write FðuÞ. Here N repre-
sents the size of the system of ODEs (1); when N is large, as in the case of a semi-discretization of a PDE, the storage required
to solve the system of equations (1) can be the limiting factor for practical computations.

In particular, we are interested in the approximate solution of (1) via the Runge–Kutta method [4,11]
yi ¼ un þ Dt
Xi�1

j¼1

aijFðtn þ cjDt; yjÞ 1 6 i 6 m; ð2aÞ

unþ1 ¼ un þ Dt
Xm

j¼1

bjFðtn þ cjDt; yjÞ: ð2bÞ
Here un is an approximation to uðtnÞ and Dt ¼ tnþ1 � tn. The intermediate values yi are referred to as stages, and the Butcher
coefficients aij; bj; cj define the method. A straightforward implementation of (2b) requires mþ 1 memory registers of length
N, where m is the number of stages and N is the number of ordinary differential equations. In early computers, only a very
small amount of memory was available for storing both the program and intermediate results of the computation, which led
Gill to devise a four-stage fourth-order Runge–Kutta method that could be implemented using only three memory registers
[10]. The method relied on a particular algebraic relation between the coefficients, such that only certain combinations of
previous stages (rather than all of the stages themselves) needed to be stored. This is the basic idea underlying all low-stor-
age methods, including those of the present work. Blum later provided a three-register implementation of the classical
Runge–Kutta method (with rational coefficients) [2]. Fyfe showed that all four-stage fourth-order methods are capable of
three-register implementation [9]. Shampine devised a variety of techniques for reducing the storage requirements of meth-
. All rights reserved.
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ods with many stages [16]. Williamson devised a two-register algorithm [21]; he showed that ‘‘all second-order, many third-
order, and a few fourth-order” methods can be implemented in this fashion. One of his third-order methods is among the
most popular low-storage methods; however, his fourth-order methods are not generally useful because they apply only
to the special case in which FðuÞ is bounded as u ! 1.

On modern computers, storage space for programs is no longer a concern; however, when integrating very large numbers
of ODEs, fast memory for temporary storage during a computation is often the limiting factor. This is typically the case in
method of lines discretizations of PDEs, and modern efforts have focused on finding low-storage methods that are also opti-
mized for stability and or accuracy relative to particular semi-discretizations of PDEs. Exploiting Williamson’s technique,
Carpenter and Kennedy [8] developed four-stage, third-order, two-register methods with embedded second-order methods
for error control. They also derived five-stage fourth-order two-register methods [7]. In perhaps the most thorough work on
low-storage methods, Kennedy et. al. [14] generalized a type of low-storage implementation originally due to van der Hou-
wen [20]. They provide many methods of various orders, optimized for a variety of accuracy and stability properties. Further
development of low-storage Runge–Kutta methods in the last decade has come from the computational aeroacoustics com-
munity [13,18,5,6,3,1,19].

All of the two-register methods in the literature use one of two algorithms (referred to below as 2N and 2R). These algo-
rithms rely on particular assumptions regarding the evaluation and storage of F. Recently, in [15], a new type of low-storage
algorithm was proposed, based on a different assumption on F. The aim of the present work is to present a general algorithm
based on this assumption, which includes the 2N and 2R algorithms as special cases, but allows additional degrees of free-
dom in designing the methods.

It is often important, when solving an ODE numerically, to have an estimate of the local truncation error. Methods that
provide such error estimates are known as embedded methods. Existing low-storage embedded methods always require
an extra memory register to provide the error estimate. If a desired error tolerance is exceeded in a given step, it may be nec-
essary to restart that step. In this case, another additional register is necessary for storing the previous step solution. In some
applications where no error estimate is used, restarting may still be required based on some other condition (such as a CFL
condition) that is checked after each step. In this case, again, existing low-storage methods require the use of an extra register.

In the present work we present improved low-storage methods that use the theoretical minimum number of registers in
each of these situations, i.e. two registers if an error estimate or the ability to restart is required, and three registers if both
are needed. In each case these methods use one register fewer than any known methods.

In Section 2, we review existing low-storage methods and explicitly define the assumptions required for their implemen-
tation. In Section 3, we observe that these methods have sparse Shu–Osher forms. Based on this observation, we introduce a
new, more general class of low-storage methods. In Section 5, we explain how the low-storage methods can be implemented
for integrating an important class of PDE semi-discretizations. In Section 6, we present new low-storage methods.

2. Two-register methods

Before proceeding, it is helpful to define precisely what is meant by the number of registers required by a method. Let N
denote the number of ODEs to be integrated (typically the number of PDEs multiplied by the number of gridpoints). Then we
say a method requires M registers if each step can be calculated using MN þ oðNÞ memory locations.

Let S1;S2 represent two N-word registers in memory. Then it is always assumed that we can make the assignments
S1 :¼ FðS2Þ;

and
S1 :¼ c1S1 þ c2S2;
without using additional memory beyond these two registers. Here a :¼ b means ‘the value of b is stored in a’. Using these
only these two types of assignments, it is straightforward to implement an m-stage method using mþ 1 registers.

Various Runge–Kutta algorithms have been proposed that require only two registers. Each requires some additional type
of assignment, and takes one of the following two forms.

2.1. Williamson (2N) methods

Williamson methods [21] require 2 registers and take the following form:
Algorithm 1. Williamson (2N)
ðy1Þ S1 :¼ un

for i= 2:m+1 do

S2 :¼ AiS2 þ DtFðS1Þ
ðyiÞ S1 :¼ S1 þ BiS2

end

unþ1 ¼ S1



with A2 ¼ 0. The methods proposed in [8,7,18,1,12] are also of Williamson type. Observe that an m-stage method has 2m� 1

free parameters. The coefficients above are related to the Butcher coefficients as follows:
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Bi ¼ aiþ1;i i < m

Bm ¼ bm

Ai ¼
bi�1 � ai;i�1

bi
bi – 0

Ai ¼
aiþ1;i�1 � ci

aiþ1;i
bi ¼ 0:
In order to implement these methods with just two registers, the following assumption is required:

Assumption 1 (Williamson). Assignments of the form
S2 :¼ S2 þ FðS1Þ; ð4Þ
can be made with only 2N þ oðNÞ memory.

Williamson notes that (converting some notation to the present)

No advantage can be gained by trying to generalize [Algorithm 1] by including a term [proportional to S1] in the expres-
sion for [S2]. . .this is because the additional equations determining the new parameters turn out to be linearly dependent
on those for Ai and Bi.

Indeed, it appears that the algorithm above is the most general possible using only two registers and Assumption 1.

2.2. van der Houwen (2R) methods

A different low-storage algorithm was developed by van der Houwen [20] and Wray [14]. It is similar to, but more aggres-
sive than the approach used by Gill [10]. The implementation is given as Algorithm 2.
Algorithm 2. van der Houwen (2R)
S2 :¼ un

for i = 1:m do

ðyiÞ S1 :¼ S2 þ ðai;i�1 � bi�1 ÞDtS1
S1 :¼ FðS1Þ
S2 :¼ S2 þ biDtS1

end

unþ1 ¼ S2.
The coefficients aij; bj are the Butcher coefficients, and we define a10 ¼ b0 ¼ 0. Again, an m-stage method has 2m� 1 free
parameters. The class of methods proposed in [5,6] is equivalent. In [14], an implementation is given that requires swapping
the roles of the two registers at each stage. Here we have followed the implementation of [6] as it is less complicated in that
the roles of the two registers need not be swapped at each stage.

Methods of van der Houwen type have also been proposed in [19]. The low-storage methods of [13] can be viewed as a
subclass of van der Houwen methods with especially simple structure.

In order to implement these methods with just two registers, the following assumption is required:

Assumption 2 (van der Houwen). Assignments of the form
S1 :¼ FðS1Þ;
may be made with only N þ oðNÞ memory.

Again, it seems that the above algorithm is the most general possible using only two registers and Assumption 2.
3. Low-storage methods have sparse Shu–Osher forms

The low-storage methods above can be better understood by considering the Shu–Osher form [17] for a Runge–Kutta
method. This form allows a given method to be expressed in a variety of ways. It was first introduce in order to study strong
stability preserving Runge–Kutta methods. Its usefulness in the present context lies in its ability to elucidate linear depen-
dencies among the Runge–Kutta stages.
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The Shu–Osher form of a Runge–Kutta method is
y1 ¼ un; ð5aÞ

yi ¼
Xi�1

j¼1

ðaijyj þ bijDtFðyjÞÞ 2 6 i 6 mþ 1; ð5bÞ

unþ1 ¼ ymþ1: ð5cÞ

For convenience we have shifted the indexing of a; b relative to the usual Shu–Osher form in order to make the stages yi

agree with the Butcher form. The Shu–Osher form for a given method is not unique. By writing (5c) as a homogeneous linear
system, it follows that the method is invariant under the transformation (for any t and i; j > 1)
aij ) aij � t; ð6aÞ
aik ) aik þ tajk k – j; ð6bÞ
bik ) bik þ tbjk: ð6cÞ
It is convenient to define the matrices:
ðaÞij ¼
0 i ¼ 1;
aij i > 1;

�
ð7Þ

ðbÞij ¼
0 i ¼ 1;
bij i > 1:

(
ð8Þ
Defining further a0; b0 to be the upper m�m parts of a; b, and a1; b1 to be the remaining last rows, the relation between the
Butcher array and the Shu–Osher form is
A ¼ ðI � a0Þ�1
b0 ¼

Xm�1

i¼0

ai
0

 !
b0; ð9aÞ

bT ¼ b1 þ a1A: ð9bÞ
It turns out that Williamson and van der Houwen methods possess a Shu–Osher form in which the matrices a; b are very
sparse. This is not surprising, since low-storage algorithms rely on partial linear dependencies between the stages, and such
dependencies can be exploited using the transformation (6c) to introduce zeros into these matrices.

3.1. 2N methods

By straightforward algebraic manipulation, Williamson methods can be written in Shu–Osher form with
yi ¼ ai;i�2yi�2 þ ð1� ai;i�2Þyi�1 þ bi;i�1DtFðyi�1Þ 1 < i 6 mþ 1; ð10Þ
where ai;i�2 ¼ � BiAi
Bi�1

and bi;i�1 ¼ Bi. Here and elsewhere, any coefficients with nonpositive indices are taken to be zero. Notice

that a is bidiagonal and b is diagonal.

3.2. 2R methods

Similarly, van der Houwen methods can be written in Shu–Osher form with
yi ¼ yi�1 þ bi;i�2DtFðyi�2Þ þ bi;i�1DtFðyi�1Þ1 < i 6 mþ 1 ð11Þ
where bi;i�2 ¼ bi�1 � ai�1;i�2 and bi;i�1 ¼ ai;i�1. Notice that a is diagonal and b is bidiagonal.
4. 2S methods

Based on the Shu–Osher forms presented above for 2N and 2R methods, it is natural to ask whether it is possible to imple-
ment a method with just two registers if a and b have other types of sparse structure. Perhaps the most obvious generaliza-
tion is to allow both matrices to be bidiagonal, i.e.
yi ¼ ai;i�2yi�2 þ ð1� ai;i�2Þyi�1 þ bi;i�2DtFðyi�2Þ þ bi;i�1DtFðyi�1Þ: ð12Þ
It turns out that this is possible, under the following assumption, which was introduced in [15]:

Assumption 3. Assignments of the form
S1 :¼ S1 þ FðS1Þ;
can be made with only N þ oðNÞ memory.
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Examining the Shu–Osher form (12), it is clear that 2S methods may be implemented (under Assumption 3) using two
registers if one is willing to evaluate FðyiÞ twice for each stage i. With a little care, however, this doubling of the number
of function evaluations can be avoided. The resulting algorithm is given as Algorithm 3.
Algorithm 3. 2S
S2 :¼ 0

ðy1Þ S1 :¼ un

for i = 2:m+1 do

S2 :¼ S2 þ di�1 S1
ðyiÞ S1 :¼ c

i1
S1 þ c

i2
S2 þ bi;i� 1 DtFðS1Þ

end

unþ1 ¼ S1

The value of dm makes no essential difference (any change can be compensated by changing cmþ1;1; cmþ1;2), so we set it to
zero. Consistency requires that d1 ¼ 1; c22 ¼ 1, and
ci;1 ¼ 1� ci;2

Xi�1

j¼1

dj 2 6 i 6 mþ 1;
leaving 3s� 3 free parameters – significantly more than for the 2N or 2R methods. We refer to these methods as 2S methods.
Clearly this class includes the 2N and 2R methods as well as new methods.

While the Butcher coefficients are not needed for implementation, they are useful for analyzing the properties of the
methods. They can be obtained from the low-storage coefficients as follows. The coefficients bi;i�1 appearing in Algorithm
3 are Shu–Osher coefficients. In terms of the low-storage coefficients, the remaining nonzero Shu–Osher coefficients are
biþ1;i�1 ¼ �
ciþ1;2

ci;2
bi;i�1 2 6 i 6 m;

aiþ1;i�1 ¼ �
ciþ1;2

ci;2
ci;1 2 6 i 6 m;

aiþ1;i ¼ 1� aiþ1;i�1 2 6 i 6 m:
The Butcher coefficients are obtained by substituting the above values into (9b).
If ci2 ¼ 0 for some i, the low-storage method cannot be written in the bidiagonal Shu–Osher form; however, it will still

possess a sparse (in fact, even more sparse) Shu–Osher form, and can be implemented using two registers in a slightly dif-
ferent way. We do not investigate such methods in detail, since they have a smaller number of free parameters than the gen-
eral case. However, note that some of the methods of [15] are of this type.

4.1. 2S* methods

It is common to check some accuracy or stability condition after each step, and to reject the step if the condition is vio-
lated. In this case, the solution from the last timestep, un, must be retained during the computation of unþ1. For 2R/2N/2S
methods, this will require an additional register. On the other hand, in [15], methods were proposed that can be imple-
mented using only two registers, with one register retaining the previous solution. We refer to these as 2S* methods. These
methods have Shu–Osher form
yi ¼ ai;1un þ ai;i�1yi�1 þ bi;i�1DtFðyi�1Þ: ð14Þ
Here we give a general algorithm for such methods (Algorithm 4), which is straightforward given the sparse Shu–Osher form.
It is equivalent to the usual 2S algorithm with ci2 ¼ ai;1 and di ¼ 0 except d1 ¼ 1. Remarkably, these methods have as many
free parameters (2m-1) as 2N/2R methods.
Algorithm 4. 2S*

ðy1Þ S1 :¼ un S2 :¼ un

for i = 2:m+1 do

ðyiÞ S1 :¼ ð1� ai;1 ÞS1 þ ai;1 S2 þ bi;i�1 DtFðS1Þ
end

unþ1 ¼ S1



1768 D.I. Ketcheson / Journal of Computational Physics 229 (2010) 1763–1773
4.2. 2S embedded pairs
It is often desirable to compute an estimate of the local error at each step. The most common way of doing this is to use an
embedded method, i.e. a second Runge–Kutta method that shares the same matrix A (hence the same stages) but a different
vector of weights b̂ in place of b. The methods are designed to have different orders, so that their difference gives an estimate
of the error in the lower order result. As it is common to advance the higher order solution (‘local extrapolation’), we refer to
the higher order method as the principal method, and the lower order method as the embedded method. Typically the
embedded method has order one less than the principal method.

In [14], many 2R embedded pairs are given; however, a third storage register is required for the error estimate. The 2S
algorithm can be modified to include an embedded method while still using only two storage registers. The implementation
is given as Algorithm 5.
Algorithm 5. 2S embedded
S2 :¼ 0

ðy1Þ S1 :¼ un

for i = 2:m+1 do

S2 :¼ S2 þ di�1 S1
ðyiÞ S1 :¼ c

i1
S1 þ c

i2
S2 þ bi;i�1 DtFðS1Þ

end

unþ1 ¼ S1

ðûnþ1Þ S2 :¼ 1Pmþ1
i¼2 di

ðS2 þ dmþ1 S1Þ
Here ûnþ1 is the embedded solution. Note that there are two additional free parameters, dm; dmþ1, effectively determining
the weights b̂. Since the conditions for first and second-order are (for fixed abscissas c) a pair of linear equations for the
weights, it would appear that if the embedded method is at least second-order, then necessarily b̂ ¼ b. However, by including
additional stages, the added degrees of freedom can be used to achieve independence of b; b̂.

The relation between the coefficients in Algorithm 5 and the Shu–Osher coefficients for the principal method is again gi-
ven by (17), and the Butcher coefficients can then be obtained using (9b). The embedded method has the same Butcher ar-
rays A; c, with the weights b̂ given by
b̂j ¼
1P

k
dk

dmþ1bj þ
X

i

diaij

 !
; ð15Þ
where bj; aij are the Butcher coefficients of the principal method.

4.3. 3S* methods

Our experience indicates that the class of 2S* methods above typically have relatively unfavorable error constants (though
they are not so large as to be unusable for practical applications). Hence we are led to consider methods with Shu–Osher form
yi ¼ ai;1un þ ai;i�1yi�1 þ ai;i�2yi�2 þ bi;i�2DtFðyi�2Þ þ bi;i�1DtFðyi�1Þ: ð16Þ
These methods can be implemented using three registers, while retaining the previous solution. Hence we refer to them as
3S* methods. Because they allow more free parameters than 2S* methods, 3S* methods can be found with much smaller error
constants. Furthermore, it is possible to design embedded pairs within this framework. The corresponding algorithm is given
as Algorithm 6. Note that these are the first methods to provide both error control and the ability to restart a step with only
three memory registers. No further improvement is possible, since the new solution, the previous solution, and an error esti-
mate must be available simultaneously.
Algorithm 6. 3S* embedded
S3 :¼ un

ðy1Þ S1 :¼ un

for i = 2:m+1 do

S2 :¼ S2 þ di�1 S1
ðyiÞ S1 :¼ c

i1
S1 þ c

i2
S2 þ c

i3
S3 þ bi;i�1 DtFðS1Þ

end

ðûnþ1Þ S2 :¼ 1Pmþ2
j¼1

dj
ðS2 þ dmþ1 S1 þ dmþ2S3Þ

unþ1 ¼ S1
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Note that including terms in Stt2 proportional to S3 is superfluous. Consistency requires d1 ¼ 1 and we take c22 ¼ 1;
c21 ¼ c23 ¼ c33 ¼ c43 ¼ 0 to eliminate additional spurious degrees of freedom. Thus the primary method has 4m� 6 free
parameters, with 3 more available for the embedded method. Once again, to avoid having b̂ ¼ b, additional stages are necessary.

Again, the coefficients bi;i�1 in Algorithm 6 are just the corresponding Shu–Osher coefficients. The remaining Shu–Osher
coefficients are
biþ1;i�1 ¼ �
ciþ1;2

ci;2
bi;i�1 2 6 i 6 m;

aiþ1;1 ¼ ciþ1;3 �
ciþ1;2

ci;2
ci;3 2 6 i 6 m;

aiþ1;i�1 ¼ �
ciþ1;2

ci;2
ci;1 2 6 i 6 m;

aiþ1;i ¼ 1� aiþ1;i�1 � aiþ1;1 2 6 i 6 m:
The Butcher array for the principal method can then be obtained using (9b). The embedded method is again identical except
for the weights, which are given by (15).

5. Feasibility of low-storage assumptions

In this section we discuss the feasibility of the various low-storage assumptions. We will assume the method is applied to
integrate a semi-discretization of a PDE on a structured grid where the stencil is local; in 1D this means that the Jacobian is
sparse with narrow bandwidth; i.e., the formula for updating a given cell depends on a local stencil whose size is indepen-
dent of the overall grid size. This is typical of many finite difference, finite volume, and discontinuous Galerkin methods. For
semi-discretizations with dense jacobian, it appears that an additional ‘working space’ memory register will always be nec-
essary. In one dimension, we write the semi-discretization as:
@uij

@t
¼ Fðui�r ; . . . ;uiþrÞ; ð17Þ
for some (small) fixed integer r.

5.1. 2N methods

Recall that 2N methods require Assumption 1, which involves assignments of the form
S1 :¼ S1 þ FðS2Þ: ð18Þ
For systems of the form (17), implementation of 2N methods is completely straightforward, since the register from which F is
being calculated is different from the register to which it is being written. The algorithm simply marches along the grid, cal-
culating F at each point.

5.2. 2R methods

Recall that 2R methods require Assumption 2, which involves assignments of the form
S1 :¼ FðS1Þ: ð19Þ
A naive implementation like that prescribed for 2N methods above will overwrite solution values that are needed for sub-
sequent computations of F. It is thus necessary to maintain a small buffer with old solution values that are still needed. In one
dimension, the buffer need only be the size of the computational stencil (i.e., 2r+1). The algorithm looks roughly like this
(letting S denote the memory register and w the buffer)
w½tt1 : 2r� :¼ w½2 : 2rþ 1�;
w½2rþ 1� :¼ S½iþ r�;
S½i� :¼ FðwÞ:
In higher dimensions a similar strategy can be used, depending on whether the stencil is one-dimensional or multi-dimen-
sional. If it is 1D, then one can simply apply the algorithm above along each slice. If it is d-dimensional then a buffer con-
taining 2r þ 1 slices of dimension d� 1 is required. In either case, the buffer size is much smaller than a full register.

5.3. 2S methods

For the type of spatial discretizations under consideration here, implementation of 2S methods is no more difficult than
implementation of 2R methods. The algorithm in 1D is identical except that one assigns



Table 1
Properties of low-storage methods.

Registers Required

Method SI SR Aðpþ1Þ Aðpþ2Þ bSI
bSR

bAðp̂þ1Þ Bðp̂þ1Þ Cðp̂þ1Þ D Eðp̂þ1Þ rF2 rL1 rF1 N R EE R,EE

Classical RK4 0.707 0.696 1.45e�02 1.60e�02 1.000 1.000 0.000 4 5 – –
RK4()4[2S] 0.707 0.696 2.81e�02 3.02e�02 0.000 1.000 0.000 2 3 – –
RK4()6[2S] 0.597 1.600 4.17e�03 5.30e�03 0.000 2.087 0.000 2 3 – –
RK4()5[2S*] 0.619 0.671 1.49e�02 1.88e�02 0.000 1.301 0.000 2 2 – –
RK4(3)5[2R+]C 0.665 0.963 5.12e�03 7.45e�03 0.634 0.900 8.83e�03 1.409 0.964 0.845 0.580 0.000 1.717 0.000 2 3 2 3
RK4(3)6[2S] 0.733 0.586 2.58e�02 3.64e�02 0.327 0.518 3.87e�02 0.643 1.193 1.961 0.667 0.000 1.204 0.000 2 3 2 3
RK4(3)5[3S*] 0.668 0.930 5.52e�03 7.97e�03 0.399 0.833 6.38e�02 1.198 1.159 3.624 0.087 0.000 1.664 0.000 3 3 3 3
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s½i� :¼ s½i� þ FðwÞ;
at each point. The extension to multiple dimensions follows the same pattern.
6. Improved low-storage methods

In this section we present some new low-storage methods of the types developed in the previous section. This is only
intended to demonstrate what is possible; a thorough investigation of 2S methods optimized for various properties, like that
done in [14] for 2R methods, is left for future work.

Similarly to [14], we refer to a method as RK-pðp̂Þm½X�, where m is the number of stages, p is the order of accuracy, p̂ is the
order of accuracy of the embedded method (if any), and X indicates the type of method (2R, 2S, 2S*, etc.).

By writing a three-stage Runge–Kutta method in Shu–Osher form (5c) and using transformations of the form (6c) to write
the method in the form (12), it is seen that any three-stage method may be implemented in 2S form except in the special
case that b31 ¼ a31b21. In this case the method may be implemented with two registers using a slight modification of the
2S algorithm. Hence all three-stage Runge–Kutta methods can be implemented using two registers.

Throughout the development of low-storage Runge–Kutta methods, fourth-order methods have been of particular inter-
est [10,2,9,21]. In Table 1 we present several examples of minimum storage fourth-order methods. We have also found 2S
(and 2S*, embedded, etc.) methods of fifth and sixth orders. As far as we know, our sixth order methods are the first two-
register methods of sixth order. A description of these methods will be included in a forthcoming work.

It is known that no generally applicable four-stage fourth-order two-register methods of 2N or 2R type exist [21,14].
This is not surprising, since four-stage methods in those classes have seven free parameters, whereas there are 8 condi-
tions for fourth-order accuracy. Four-stage 2S methods, on the other hand, have 9 free parameters, and fourth-order meth-
ods of this kind exist. An example of such a method is given in Table 1 as RK4()4[2S]. Its coefficients are provided in Table
2.

By allowing additional stages, methods with improved accuracy or stability are possible. These methods can have
very good properties compared to 2R or 2N methods because of the additional degrees of freedom available. As an
example, we include in Table 3 a six-stage, fourth-order method RK4()6[2S] with improved real-axis stability. In Table
4 we present a 2S* method of fourth-order, using five stages. In Table 5 we present a 4(3)5 2S pair, and in Table 6 a
4(3)5 3S* pair.

Table 1 summarizes the accuracy and stability properties of these methods. Most of the properties in this table follow the
notation of [14]. The quantities SI; SR are the size of the largest interval included in the region of absolute stability along
the imaginary and real axes, respectively, scaled (divided) by the number of stages of the method. The quantities bSI; bSR

are the corresponding values for the embedded scheme. The quantity Apþ1 is the L2 principal error norm (i.e., the norm of
the vector of leading-order truncation error coefficients). For definitions of the remaining properties, the reader is referred
to [14]. The last four columns of the table indicate the number of registers required to implement the method, under the
appropriate low-storage assumption for each method. The column labeled ‘‘R” indicates the number required if the ability
to restart a step is needed; column ‘‘EE” indicates the number required in case the embedded error estimator is used; column
‘‘R, EE” indicates the number needed if both restarts and error estimation are necessary; column ‘‘N” indicates the number
required if neither restarts or error estimates are needed.

The classical fourth-order RK method and a recommended 2R method from [14] are included for comparison. The new
methods all have reasonably good properties. None of the methods is contractive, however; for contractive low-storage
methods see [15].
7. Conclusions

We have proposed a new class of low-storage Runge–Kutta methods and given examples of high order methods in this
class requiring fewer stages than existing low-storage methods. The methods include embedded pairs using only two mem-
ory registers, as well as embedded pairs that retain the previous solution value and use only three memory registers. Such
methods were not previously available. A thorough investigation of 2S methods optimized for various properties, like that
done in [14] for 2R methods, would be of great utility.
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Appendix A. Coefficients of low-storage methods

See Tables 2–6.



Table 2
Coefficients for RK4()4[2S].

i ci1 ci2 bi;i�1 di

1 0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000
2 0.000000000000000 1.000000000000000 1.193743905974738 0.217683334308543
3 0.121098479554482 0.721781678111411 0.099279895495783 1.065841341361089
4 �3.843833699660025 2.121209265338722 1.131678018054042 0.000000000000000
5 0.546370891121863 0.198653035682705 0.310665766509336

Table 3
Coefficients for RK4()6[2S].

i ci1 ci2 bi;i�1 di

1 0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000
2 0.000000000000000 1.000000000000000 0.238829375897678 0.564427596596565
3 0.344088773828091 0.419265952351424 0.467431873315953 1.906950911013704
4 �0.655389499112535 0.476868049820393 0.215210792473781 0.617263698427868
5 0.698092532461612 0.073840520232494 0.205665392762124 0.534245263673355
6 �0.463842390383811 0.316651097387661 0.803800094404076 0.000000000000000
8 0.730367815757090 0.058325491591457 0.076403799554118

Table 4
Coefficients for RK4()5[2S*].

i ci1 ci2 bi;i�1

1 0.000000000000000 0.000000000000000 0.000000000000000
2 0.000000000000000 1.000000000000000 0.357534921136978
3 �3.666545952121251 4.666545952121251 2.364680399061355
4 0.035802535958088 0.964197464041912 0.016239790859612
5 4.398279365655791 �3.398279365655790 0.498173799587251
6 0.770411587328417 0.229588412671583 0.433334235669763

Table 5
Coefficients for RK4(3)6[2S].

i ci1 ci2 bi;i�1 di

1 0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000
2 0.000000000000000 1.000000000000000 0.653858677151052 �1.662080444041546
3 1.587969352283926 0.888063312510453 0.258675602947738 1.024831293149243
4 1.345849277346560 �0.953407216543495 0.802263873737920 1.000354140638651
5 �0.088819115511932 0.798778614781935 0.104618887237994 0.093878239568257
6 0.206532710491623 0.544596034836750 0.199273700611894 1.695359582053809
7 �3.422331114067989 1.402871254395165 0.318145532666168 0.392860285418747

Table 6
Coefficients for RK4(3)5[3S*].

i ci1 ci2 ci3 bi;i�1 di

1 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000
2 0.000000000000000 1.000000000000000 0.000000000000000 0.075152045700771 0.081252332929194
3 �0.497531095840104 1.384996869124138 0.000000000000000 0.211361016946069 �1.083849060586449
4 1.010070514199942 3.878155713328178 0.000000000000000 1.100713347634329 �1.096110881845602
5 �3.196559004608766 �2.324512951813145 1.642598936063715 0.728537814675568 2.859440022030827
6 1.717835630267259 �0.514633322274467 0.188295940828347 0.393172889823198 �0.655568367959557
7 �0.194421504490852
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